Volume 5, Issue 1, March 2019, Page: 9-17
Characterization of Multinanoporous Pt-TiO2 Thin Films Fabricated by a Three-Step Electrochemical Technique
Ekoko Bakambo Gracien, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Muswema Lunguya Jérémie, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Mbongo Kimpanza Antoine, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Nzazi Kambamba Nicole, Department of Biological Chemistry, High Educational Institute of Kitoy, Masimanimba, Democratic Republic of the Congo
Nduku Mafwa Fabrice, Department of Physical Chemistry, High Educational Institute of Kikwit, Kikwit, Democratic Republic of the Congo
Musengele Bilasi Denis, Department of Physical Chemistry, High Educational Institute of Kikwit, Kikwit, Democratic Republic of the Congo
Kidingi Kambasi Pierre, Department of Biological Chemistry, High Educational Institute of Dula, Bulungu, Democratic Republic of the Congo
Ndonganzadi Tresor, Department of Physical Chemistry, High Educational Institute of Kikwit, Kikwit, Democratic Republic of the Congo
Mukiatom Perbom, Department of Construction, Institute of Construction and Public Works of Kikwit, Kikwit, Democratic Republic of the Congo
Received: Jul. 3, 2019;       Accepted: Jul. 24, 2019;       Published: Aug. 13, 2019
DOI: 10.11648/j.ajn.20190501.12      View  121      Downloads  27
Abstract
In the present investigation, a three-step electrochemical as a novel method has been applied to fabricate multinanoporous thin film electrodes of pure TiO2 and the doped Pt-TiO2 (of approximately 15 nm) from the titanium sheet using sulfuric acid as electrolyte and chloroplatinic acid as platinum dopant precursor. Characterization techniques so far discussed in this work revealed that the fabricated products corresponded to pure TiO2 and to the doped Pt-TiO2 respectively. The prepared Pt-TiO2 thin film electrodes have photoresponse to visible light, which indicates a new possibility for improving intrinsic TiO2 photoresponse.
Keywords
Pt-TiO2 Films, Anodic Oxidation, Visible Photo Response, Doping
To cite this article
Ekoko Bakambo Gracien, Muswema Lunguya Jérémie, Mbongo Kimpanza Antoine, Nzazi Kambamba Nicole, Nduku Mafwa Fabrice, Musengele Bilasi Denis, Kidingi Kambasi Pierre, Ndonganzadi Tresor, Mukiatom Perbom, Characterization of Multinanoporous Pt-TiO2 Thin Films Fabricated by a Three-Step Electrochemical Technique, American Journal of Nanosciences. Vol. 5, No. 1, 2019, pp. 9-17. doi: 10.11648/j.ajn.20190501.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Yan. W., Yungeng Z, Peichen L, IOP Conference Series, Earth and Environmental Science, 81 (1), (2017): 012-022.
[2]
Piskalis Sahaya M K, Vinoh Kumar P, Koolath Rama K et al., J. Mater. Chem. A, 6, (2018), 23435–23444.
[3]
Luis F. Arenas, Carlos Ponce de Leon, Richard P. Boardman, et al., Journal of The Electrochemical Society, 164 (2), (2017), D57-D66.
[4]
Changkun Z, Hongmei Y, Yongkun L et al., Journal of Electroanalytical Chemistry 701 (2013), 14-19.
[5]
Shaddad M. N., Al-Mayouf A. M., Ghanem M. A., et al., Int. J. Electrochem. Sci., 8 (2013), 2468 – 2478.
[6]
Fereshteh C, Samira B, Sharifah B, et al., Sensors and Actuators B, 177 (2013), 898– 903.
[7]
Agata MS, Paulina R, Kunlei W et al., Catalysts, 8 (8), (2018). 316-319.
[8]
Der-Shan S, Jyh-Hwa K, Yaohsuan T et al., Nanomaterials, 6 (12), (2016), 237–239.
[9]
Jadranka M, Sladana M, Nikola C et al., J. Electrochem. Soc, 165 (15), (2018), J 3253-J3258.
[10]
Jinbo Z, Nan S, Faguan Z et al., RSC Advances, 7 (89), (2017), 56194-56203.
[11]
Hang S. Qinrong H. Sahn Z, et al., New J. Chem 41, (2017), 7244-7252.
[12]
Rettew R. E., Allam N. K., Alamgir F. M., et al., ACS Appl. Mater. Interfaces, 3, (2011), 147-149.
[13]
Jinbo Z, Xuilan H, Faguan Z et al., Nanotechnology, 28 (50), (2017), 56194-56203.
[14]
Košević M, Šekularac G, Živković L et al., Croat. Chem. Acta 90 (2) (2017), 251–258.
[15]
Changkun Z, Hongmei Y, Yongkun et al., Journal of Electroanalytical Chemistry 701, (2013), 14–19.
[16]
Shaddad M. N., Al-Mayouf A. M., Ghanem M. A., et al., Int. J. Electrochem. Sci. 8, (2013), 2468 – 2478.
[17]
Susan S, Luis C Silvia, Maria E M., et al., Electrochimica Acta, 35 (6), (2017).
[18]
Ekoko B. Gracien, Joseph K-K. Lobo, Omer M. Mvele et al., South African Journal of Chemistry, 66, (2013), 1-6.
[19]
Ekoko B, Lobo K-K, Mvele M, et al., Pan African and South African Meeting of the International Year of Crystallography (IYCr 2014 Africa), 12-17, Octobre 2014, Bloemfontein, South Africa.
[20]
Ekoko B Gracien, Jianian S, XianRong S, Dong Liu, et al, Photocatalytic activity of manganese, chromium and cobalt doped- anatase TiO2 nanoporous electrodes produced by re-anodization method. Thin Solid Films, Vol. 515, No 13, (2007), 5287-5297.
[21]
Jianian S, Moucheng L, Dong L, et al, Effects of applied bias and dopants on the photocatalytic degradation of aqueous dye solution by TiO2/Ti electrode. Materials Science Forum, Vols. 539-543, (2007), 2240-2245.
[22]
Ekoko Bakambo G., Joseph K. K. Lobo, Omer M. Mvele, et al, Effect of an external applied potential on the photocatalytic properties of manganese-doped titanium dioxide, American Journal of Physical Chemistry, 3 (4), (2014), 41-46.
[23]
Toto Mabiala M, Albert Kazadi M B, Gracian Ekoko B et al, International Journal of Materials Science and Applications. 5 (5), (2016), 207-213.
[24]
He Y. J., Peng J. F., Chu W et al, J. Mater. Chem. A, 2, (2014), 1721.
[25]
Ismail A. A., Robben L., Bahnemann D. W, Chem Phys Chem, 12, (2011), 982.
[26]
Zhang X., Zhou G, Xu J et al, Journal of Solid State Chemistry, 183 (2010), 1394–1399.
[27]
Wagner, C. D. Naumkin A. V, Kraut-Vass A. et al., NIST X-ray Photoelectron Spectroscopy Database NIST Standard Reference Database 20, (2003), Version 3.5.
[28]
Krstajic N. V, Vracar L. M, Radmilovic V. R, et al., Surf. Sci. 601 (2007) 1949–1966.
[29]
Zhang J, Zhang M, Jin Z et al., Appl. Surf. Sci. 258 (2012) 3991–3999.
[30]
Kuznetsov M. V, Ju. F. Zhuravlev, et al., J. Electron. Spectrosc. Relat. Phenom. 58 (1), (1992), 145.
[31]
Mayer J. T., Diebold U, Madey T. E et al., J. Electron. Spectrosc. Relat. Phenom. 73 (1), (1995), 65.
[32]
Zhao G. L, Kozuka H., Yoko T, Thin Solid Films, 277, (1996), 147-154.
[33]
Li F. B., Li X. Z., Chromosphere, 48, (2002), 1103-1111.
[34]
Kamat P. V, J. Phys. Chem. B, 106, (2002), 7729-7744.
[35]
Kamat P. V, Pure Appl. Chem., 74, (2002), 1693-1706.
[36]
Sasaki T, Koshizaki N, Yoon J. W et al., J. Photochem. Photobiol. A, 145, (2001), 11-16.
[37]
Ohsaka T., Izumi F, Fujiki Y, J. Raman Spectrosc., 7, (1978), 321-324.
[38]
Balachandran U, Eror N. G, J. Solid State Chem., 42, (1982), 276-282.
Browse journals by subject