Study the Effect of Polycarbonate Superhydrophobic Nanocomposite on Antibacterial Activity
Muntadher Ismaiel Rahmah,
Raad Saadon Sabry
Issue:
Volume 4, Issue 1, March 2018
Pages:
1-6
Received:
31 August 2018
Accepted:
25 September 2018
Published:
23 October 2018
Abstract: A superhydrophobic and antibacterial surface on a glass substrate was fabricated by One-step phase separation method using the polycarbonate polymer and solvent \ non- solvent. The resulting surfaces showed a static water contact angle (CA) of 154° and excellent inhibition percentage of Pseudomonas aeruginosa bacteria. FESEM showed that the surface structure comprised branches or petals outside the "plant seabed's" formation, in addition to related AgNps and Ag with a rough structure. In order to test the stability, bacteria suspensions were poured above the surface and allowed to settle on top of the surface for several minutes, then, an Anti-adhesive effect of colonies bacteria evaluated with a very small percentage of bacteria adhesive on surfaces. This preparation method is advantageous as it does not require complicated or high-cost materials and is environmentally friendly and highly efficient.
Abstract: A superhydrophobic and antibacterial surface on a glass substrate was fabricated by One-step phase separation method using the polycarbonate polymer and solvent \ non- solvent. The resulting surfaces showed a static water contact angle (CA) of 154° and excellent inhibition percentage of Pseudomonas aeruginosa bacteria. FESEM showed that the surface...
Show More
Fabrication of Superhydrophobic Surface of ZnO Thin Films by Using Oleic Acid
Raad Saadon Sabry,
Nisreen Khalid Fahad
Issue:
Volume 4, Issue 1, March 2018
Pages:
7-15
Received:
1 September 2018
Accepted:
21 September 2018
Published:
23 October 2018
Abstract: Zinc oxide (ZnO) nanostructures were successfully prepared by a simple, highly efficient, and low-cost using the hydrothermal method. A superhydrophobic surface with a static water contact angle (CA) >150° has been synthesized by modifying ZnO nanostructures with 100°C at 1 h stable oleic acid (OA) as coupling agents, in order to modify their surface properties and make them more hydrophobic. Surface modification of ZnO nanostructures has been performed, and the effect of the modification on the structure and morphological properties were investigated. The resulting nanostructures were characterized by XRD, FESEM, UV-VIS spectroscopy. XRD pattern revealed that ZnO nanostructures prepared by hydrothermal method (crystallite size ~30 nm) have hexagonal wurtzite structure with a good crystalline quality. FESEM images of ZnO nanostructures prepared by hydrothermal showed hexagonal nanorods assembled in flower-like shape, there was much change in the surface morphology of modified samples after surface modification such as (nanorods, nanoflowers, and nanotube). Results show the water CA of ZnO superhydrophobic surfaces increased steadily from 147±2° to 154±2° when the OA weight percentage increased from 2mg to 10mg. The optical measurements for ZnO nanostructures showed that all samples the absorption band in the ultraviolet region. The band gap of pure ZnO nanostructures 3.5 eV and after modification ZnO surface 3.6 eV. All samples of ZnO were maintained at room temperature for 1 hour to 5 months to test the stability of the surface. The water CAs were measured for each condition, and very little change was observed in the CAs. In addition, the ZnO surface remained superhydrophobic without any contamination observed after water was sprayed on it.
Abstract: Zinc oxide (ZnO) nanostructures were successfully prepared by a simple, highly efficient, and low-cost using the hydrothermal method. A superhydrophobic surface with a static water contact angle (CA) >150° has been synthesized by modifying ZnO nanostructures with 100°C at 1 h stable oleic acid (OA) as coupling agents, in order to modify their surfa...
Show More